The Mixed Problem in Lipschitz Domains with General Decompositions of the Boundary
نویسنده
چکیده
This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain Ω ⊂ Rn, n ≥ 2, with boundary that is decomposed as ∂Ω = D ∪ N , D and N disjoint. We let Λ denote the boundary of D (relative to ∂Ω) and impose conditions on the dimension and shape of Λ and the sets N and D. Under these geometric criteria, we show that there exists p0 > 1 depending on the domain Ω such that for p in the interval (1, p0), the mixed problem with Neumann data in the space Lp(N) and Dirichlet data in the Sobolev space W 1,p(D) has a unique solution with the non-tangential maximal function of the gradient of the solution in Lp(∂Ω). We also obtain results for p = 1 when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces.
منابع مشابه
A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملNon-smooth atomic decompositions, traces on Lipschitz domains, and pointwise multipliers in function spaces
We provide non-smooth atomic decompositions for Besov spaces Bsp,q(R n), s > 0, 0 < p, q ≤ ∞, defined via differences. The results are used to compute the trace of Besov spaces on the boundary Γ of bounded Lipschitz domains Ω with smoothness s restricted to 0 < s < 1 and no further restrictions on the parameters p, q. We conclude with some more applications in terms of pointwise multipliers. Ma...
متن کاملInverse positivity for general Robin problems on Lipschitz domains
It is proved that elliptic boundary value problems in divergence form can be written in many equivalent forms. This is used to prove regularity properties and maximum principles for problems with Robin boundary conditions with negative or indefinite boundary coefficient on Lipschitz domains by rewriting them as a problem with positive coefficient. It is also shown that such methods cannot be ap...
متن کاملMIXED BOUNDARY VALUE PROBLEM FOR A QUARTER-PLANE WITH A ROBIN CONDITION
We consider a mixed boundary value problem for a quarter-plane with a Robin condition on one edge. We have developed two procedures, one based on the advanced theory of dual integral equations and the other, in our opinion simpler technique, relying on conformal mapping. Both of the procedures are of interest, because the former may be easier to adapt to other boundary value problems.
متن کاملThe Mixed Boundary Problem in L and Hardy spaces for Laplace’s Equation on a Lipschitz Domain
We study the boundary regularity of solutions of the mixed problem for Laplace’s equation in a Lipschitz graph domain Ω whose boundary is decomposed as ∂Ω = N ∪ D, where N ∩ D = ∅. For a subclass of these domains, we show that if the Neumann data g is in Lp(N) and if the Dirichlet data f is in the Sobolev space L(D), for 1 < p < 2, then the mixed boundary problem has a unique solution u for whi...
متن کامل